Заволжская дамба

Более 55-ти лет на левом берегу Волги существует объект, жизненно важный для тысяч людей, проживающих на Нижней Террасе. В повседневной жизни его называют просто – дамба. Согласно проектно-технической документации – это комплекс гидротехнических сооружений инженерной защиты ныне Ульяновского патронного завода и его жилого массива. Гидротехнических сооружений подобной сложности не было даже в Нидерландах, хотя 40% территории этой страны находится ниже уровня моря. В связи со строительством Волжской ГЭС им. В.И. Ленина (ныне Куйбышевской ГЭС) и последующим образованием Куйбышевского водохранилища территория Володарского района города Ульяновска, которая включала старинные заволжские слободы Часовня, Канава и Королёвка, площадку Ульяновского машиностроительного завода (УМЗ) и его жилого массива, а также сёла Архангельское и Сосновка, деревни Малое и Большое Пальцино Чердаклинского района оказалась в зоне затопления. Горизонт водохранилища поднимался плотиной Куйбышевской ГЭС на 20 м выше естественного уровня р. Волги. Большинство производственных и жилых зданий были бы затоплены на уровне 3-х этажей. Слой воды составил бы 6- 10 м в зависимости от рельефа местности. Сносу подлежало более 1000 домовладений, ж.-д. станция Нижняя Терраса, ликвидировались прежние водозаборы и выбросы канализационных стоков. В последующем это привело к строительству нового ж.-д. подъезда к заводу со станции Верхняя Терраса, переносу на 16 завода базисных складов и испытательного полигона, строительству канализационного коллектора с Нижней Террасы на Верхнюю Террасу с двумя насосными станциями №6 и №7, строительству очистных сооружений для очистки стоков Нижней Террасы в объёме 7 тыс. м 3, а также строительству новой системы электроснабжения предприятий правого берега (ЛЭП-110 кВ).

21.08.1950 г. СМ СССР принял Постановление о начале строительства Куйбышевской ГЭС. Исходя из сложной международной обстановки того периода, после проведения ТЭО для сохранения объекта п/я 19 − УМЗ им. Володарского, выпускавшего патронную продукцию, и прилегающей территории в соответствии с распоряжением СМ СССР от 06.08.1952 г. №20013 РС о строительстве Куйбышевской ГЭС и последующим приказом Министра Вооружения СССР от 12.08.1952 г. №774 в 1953-1957 годах был спроектирован и построен комплекс гидротехнических сооружений, защищающий территорию площадью 1250 га с расположенным на ней заводом (204 тыс. м 2 общей площади) и жилым посёлком на 18 тыс. человек.

Схематический проект защитных мероприятий был разработан в 1950 г. институтом «ВНИИВОДГЕО» Госстроя СССР и утверждён Комитетом по строительству при СМ СССР в феврале 1951 г. решением №41с при рассмотрении проектного задания волжской Куйбышевской ГЭС. Проектирование инженерной защиты Совет Министров СССР Министерство строительства предприятий тяжёлой индустрии возложил на Министерство строительства предприятий машиностроения. Генеральным проектировщиком стал ГПИ «Водоканалпроект» (г. Москва) Министерства предприятий индустрии. Проект защитной дамбы был разработан КПКР «Гидромеханизация» Министерства строительства предприятий машиностроения РСФСР. Система защиты от подтопления - «глубокий дренаж» разработана институтом «Фундаментпроект» этого же Министерства. Электрическая часть КИЗ разработана ЦЭМ Министерства строительства предприятий тяжёлой индустрии. В проектировании были задействованы Харьковское отделение ГПИ «Водоканалпроект» и

Ленинградский институт «Промстройпроект» Министерства предприятий тяжёлой индустрии.

Перед проектировщиками были поставлены следующие задачи:

- обеспечение незатопляемости защищаемой территории,
- обеспечение неподтопляемости территории грунтовыми водами,
- отведение грунтовых и дождевых вод с защищаемой территории,
- отведение всех видов стоков, как для завода, так и для жилых зданий.

Эти задачи были решены созданием комплекса инженерной защиты (КИЗ), который включает в себя 3 эшелона защиты.

В первый эшелон входит защитная дамба протяжённостью 8,2 км, высотой 11-16 м, с шириной по гребню 6 м и в основании 75-120 м. Дамба возведена способом гидронамыва, её объём составил 4,2 млн. м 3 речного песка. Назначение дамбы – защита территории от затопления. Гребень дамбы на 5 м выше НПУ водохранилища. Верхний откос дамбы укреплён армированными бетонными плитами толщиной 400 мм. На мокрый откос дамбы уложено более 95 тыс. м 3 железобетона. Сухой откос закреплён травяным покровом. Дамба фильтрующая, объём фильтрационного потока через тело дамбы 1500 м 3 /час. Для перехвата фильтрационного потока и предотвращения выхода его на сухой откос в теле

дамбы выполнен придамбовый дренаж с системой коллекторов протяжённостью 14 км и диаметром труб 300-400 мм.

Более фильтрационный поток проходит основание дамбы достигает 4500 м 3 /час. Для его второй перехвата выполнен эшелон – глубокий защиты глухой коллектор дренаж И протяжённостью KM, представляющий линейную систему дренажных скважин, заложенных параллельно дамбе в 150 м от её оси. По проекту система включала в себя 319 скважин (было пробурено 304), расположенных через 25 глубиной от 28 м до 45 м. Фактически на 1995 функционировало 560 скважин. Водоотбор из этих скважин в объёме 110-150 тыс. м 3 в сутки (в зависимости от горизонта

водохранилища) осуществляется двумя нитками сифонных трубопроводов диаметром 300-630 мм, уложенных на 5 км в железобетонной галерее и на 3 км в земляной призме.

По сифонным трубопроводам фильтрационный поток отводится в пять дренажных насосных станций. Две станции №2 и №4 используются для водоснабжения района в объёме 50 тыс. м 3 в сутки. На станциях установлены 24 артезианских насоса производительностью 600 м 3 /час и 1200 м 3 /час. Протяжённость напорных трубопроводов перекачки воды диаметром 400-500 мм достигает 20 км.

Для отведения фильтрационного потока, поступающего с Верхней Террасы в сторону р. Волги (600 м 3 /час), и для отведения дождевых и талых вод с ограждаемой территории (500 м 3 /час) служит третий эшелон защиты. Этот эшелон включает в себя систему водоотводных и нагорных канав общей протяжённостью 19 км и глубиной 5 м. Все водоотводные канавы размещены в придамбовой полосе шириной 100-200 м и осуществляют водоотбор лишь с половины защищаемой территории.

Электрическая часть КИЗ обеспечивает функционирования всех имеющихся агрегатов. Откачивающее оборудование имеет двойное электропитание, а насосные станции, работающие на водоснабжение — тройное. Протяжённость ЛЭП и кабельных сетей составляет 30 км. Расход электроэнергии составляет 19,5 млн. кВт/час в год.

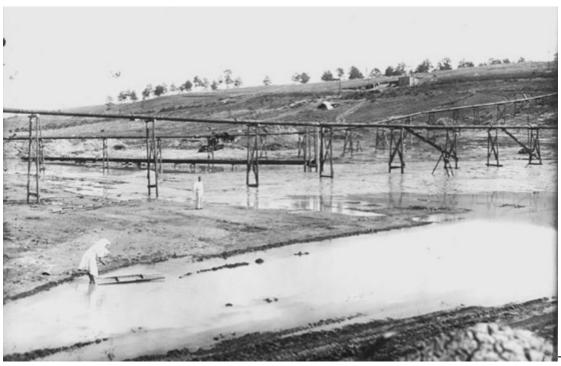
Ориентировочно общая сметная стоимость КИЗ составила 182,9 млн. руб. в ценах 1957 г. или 200 млрд. руб. в ценах 1994 г. С момента создания КИЗ, находящейся на балансе УМЗ, содержание и её эксплуатация обеспечивались Министерством оборонной промышленности СССР за счёт централизованного финансирования. Такова краткая технико-историческая характеристика дамбы.

Само строительство дамбы и других сооружений инженерной защиты такого масштаба могло проходить только в условиях строгого контроля и ответственности за порученное дело, как при проектировании, так и при строительстве. Так, при обсуждении в Правительстве СССР вопроса строительства Куйбышевской ГЭС и инженерных защит от Куйбышевского водохранилища министр вооружения Д.Ф. Устинов заявил, что Министерство вооружения отказывается от помощи Министерства энергетики и Куйбышевгидростроя и самостоятельно. не имея опыта В гидротехническом строительстве, берёт на себя координацию проектных работ (через ГСПИ-7), организацию этого строительства и его финансирование. После этого 12.08.1952 г. вышел соответствующий приказ, и сразу же были привлечены к проектированию инженерной защиты ведущие институты Москвы, Куйбышева (ныне Самара), Ростова н/Д, Ленинграда (ныне Петербург).

В сентябре-ноябре 1952 г . были разработаны и выданы рабочие чертежи на гидронамыв тела дамбы и по глубокому дренажу, электроснабжению объектов. Для выполнения этих работ Д.Ф. Устинов привлёк СМУ других Министерств. Гидронамыв подходов на правом и левом берегах р. Волги к новому и железнодорожному мостам выполняли специалисты МПС – специализированное строительно-монтажное управление (ССМУ) треста "Трансгидромеханизация" (г. Москва), главным механиком которого работал Ф.Г. Будревич. Бурение скважин глубокого дренажа и монтаж пьезометрической сети наблюдательных скважин выполнял ульяновский участок треста «Промбурвод» (г. Москва), а также ульяновский участок треста «Волгоэлектромонтаж» Министерства монтажных и специальных строительных работ. На УМЗ были направлены специалисты с заводов Министерства вооружения из городов Молотов (ныне Пермь), Сталинграда (ныне Волгоград), Ижевска. Для осуществления контроля хода строительства была образована дирекция строящегося объекта (дамбы), в которую вошли начальник И.С. Атутин, командированный в Ульяновск с Куйбышевской ГЭС с подчинением только директору УМЗ, главный инженер Р.Г. Баринов, инженер Б. Колоярцев. Генеральным подрядчиком

стал УМЗ им. Володарского, на котором для этих целей было создано управление капитального строительства (УКС).

Директором УМЗ в 1950-1960 гг., на долю которого выпали значительные события в истории завода и Володарского района Ульяновска, был Василий Петрович Белянский. Руководитель производства, сформированный в сталинский период развития страны, отличался дальновидностью в подборе кадров И перспективных проектах, организаторскими способностями и много сделал для завода и района. Одновременно, делая ставку на молодых работников и опытных специалистов, В.П. Белянский направил на строительство дамбы Г.Я. Бернштейна – главного энергетика завода, который возглавил строительство в должности начальника УКСа – заместителя директора (фото 2); В.Л. Долотова – заместителя главного механика завода, возглавившего комбинат производственных предприятий (КПП); П.И. Ситникова - начальника цеха №43, который стал начальником 3-го спецучастка сантехнических работ, а затем первым начальником цеха №69 (с 1959 г.). Главным инженером УКСа был А.Н. Коренев. В УКС, как основные подразделения, входили участок №1 (начальник С.И. Авдонин, старший прораб С.Ф. Дмитриев, начальник ПТО С.Ф. Добычин), участок №2 – жилищное строительство (начальник В.С. Мыльников), участок №4 с 1956 г . (начальник Ф.Я. Добычин), машинопрокатная база (начальник Г.С. Тарасов, ведении которой находились все бульдозеры, экскаваторы и т.д.


Для производства всех строительных работ с 1952 г. в адрес УКСа по линии Министерства вооружения и по централизованным заявкам стали прибывать специалисты разных профессий из многих городов СССР. За всё время на стройке работало всего шесть прибывших после окончании инженерно-строительных инженеров-гидротехников, институтов из Горького (В.А. Белкин и 3, Н.А. Крисламов) и Самары (А. Доброхотов, Б. Колоярцев, А.К. Крикунова, В.А. Панкратов). Основная масса специалистов строителей состояла из инженеров и техников промышленно-гражданского строительства, механиков, экономистов и т.д. В числе прибывших были инженер-макшейдер Е.Т. Минаев, старший прораб С.Ф. Дмитриев, инженер Т.И. Арцибасова (все из Москвы), специалист по бетону и арматуре Трошилов (Ижевск), инженер Черёмушников (Сталинград). Рабочие кадры пополнялись жителями Нижней Террасы, Ульяновска. Основную часть работающих составляла молодёжь, много было из окрестных левобережных деревень. Труд заключённых на строительстве КИЗ не применялся. Всего на строительстве дамбы работало 3650 человек: на общестроительных работах – 2700, на гидронамыве – 500, на бурении – 100, транспорт – 200, на каменном карьере в Смородинове – 150. Для сравнения: в 1917 г. на строительстве патронного завода №3 работало 3500 человек.

Организационно строительство можно разделить на два периода: подготовительный -1952-1953/4 гг. и основной -1953-1957 гг.

В подготовительный период, одновременно с решением кадровых вопросов, была создана мощная строительная база, включившая в себя три бетонных завода, асфальтовый и битумоварочный заводы, растворные узлы, камнедробильные и гравиесортировочные участки, полигон сборного железобетона, склады и дороги, цеха арматуры, лесопилки, кузница, котельная. В районе современной улицы Заречной были построены временные бараки для размещения строительных участков, прорабские домики. За пределами Ульяновска были организованы: - карьеры по добыче бутового камня в районе станций Гуляй, Труслейки, Ключики; - карьер по добыче гравийной массы с Попова острова; - поставка круглого леса с Шарловского и Славкинского леспромхозов и Глотовки. УКС совместно с участком треста «Гидромеханизация» готовил основание под намыв дамбы, укладывая снятый грунт в кавальер (технологический участок для отходов).

Основной период строительства включает:

- намыв дамбы отдельными участками (картами);
- строительство придамбового дренажа;
- бурение скважин глубокого дренажа и глухого коллектора;
- строительство галерей глубокого дренажа и глухого коллектора;
- строительство коллекторов придамбового дренажа;
- строительство насосных станций №№ 0, 1, 2, 3, 4 и 5;
- строительство водоводов от насосных станций №2 и №4 на фильтровальную станцию на территории УМЗ;
 - строительство водоводов от насосных станций №№ 1, 2, 3, 4 и 5 за дамбу;
 - бетонирование мокрого откоса (обращённого в сторону водохранилища);
 - электроснабжение насосных станций №№ 0, 1, 2, 3, 4 и 5;
 - строительство водоотводных канав №№ 1, 2, 3, 4, 8, 9, 10;

строительство нагорных канав №1 и №2.

Намыв дамбы осуществлялся <u>земснарядами</u> 12Н330 с применением <u>землесосов</u> типа 12Р-7, установленными в нескольких карьерах по контуру будущей дамбы. Земснаряд №1 располагался недалеко от железнодорожного моста. Один земснаряд находился в излучине р. Ботьмы (карьер №4). Пульпа — смесь крупнозернистого песка и воды в соотношении 1:3, по фанерным пульповодам диаметром 400 мм, установленным на высоте 5-6 м, поступала через специальные отверстия с шагом 10 м на предварительно

выровненный бульдозерами участок намыва. Для перехвата воды, просочившейся через тело дамбы из водохранилища, делался придамбовый дренаж: в траншеи, вырытые драглайнами – экскаваторами с обратной лопатой, укладывались керамические трубы, проводилась их обсыпка фильтрующими материалами, после чего траншеи засыпались. Собранная вода через коллектор придамбового дренажа и насосные станции должна была возвращаться в водохранилище. На этом участке работали бригады М.П. Кривоногова, И.А. Макарова, мастера В.А. Белкин, Лебедев, прорабы Е.П. Копалкин, И.П. Морозов, В.А. Панкратов, В.С. Притворов. Для перехвата дренажных вод, проходящих под подошвой дамбы, и понижения грунтовых вод на защищаемой территории бурились скважины глубокого дренажа, строились сам глубокий дренаж и глухой коллектор. Скважины бурились рабочими участка «Промбурвода» трудоёмким и долговременным ударно-канатным способом. Глубокий дренаж представляет собой линейную систему трубчатых колодцев с шагом 25 м и глубиной 25-40 м. Проводящей частью глухого коллектора является самотечный коллектор из сборных железобетонных труб диаметром 300-900 мм в траншеях длиной 3183 м. Другая часть дренажа – сифонный водосбор из стальных труб диаметром 200-600 мм строилась в железобетонной галерее проходного сечения протяжённостью 4917 м). В числе многих строителей глубокого дренажа работали бригады Ремизова, Шумилова, Яниной, мастер В.А. Белкин, прорабы А. Доброхотов, Ю.Ф. Ефимов, экскаваторщики Вдовиченко, В. Статенин. В конце октября 1953 г. УКС УМЗ приступил к строительству насосных станций №№ 3, 4 и 5, а в 1954 г. -№№ 0, 1 и 2. Руководили работами мастера В.А. Белкин, Г.Ф. Епифанов, М.П. Кривоногов, Равинский, прорабы Ю.Ф. Ефимов, В.А. Панкратов. В специальном котловане монтировался арматурный каркас, устанавливалась опалубка, в три яруса проводилось бетонирование стакана с применением глубинных вибраторов. Высота стакана достигала 20 м, а внутренний диаметр был 6, 8 или 10 м, вес стакана достигал 2000 т. В связи с отсутствием строительных кранов их работу выполняли экскаваторы драглайн ОМ-202, что представляло определённый риск и, однажды, на НС №5 ящик с бетоном сорвался. Добротно выполненная приёмная площадка предотвратила несчастный случай. В зимних условиях с наружной стороны опалубки устраивалась «тепловая рубашка» из опилок толщиной 200 мм, а внутри стакана ставили печь – «буржуйку». Для понижения уровня грунтовых вод промышленной территории были построены и ныне работают водоотводные канавы №№ 1, 2, 8, 9, 10. Канавы №3 и №4 попали в зону жилого строительства

(микрорайон №1). Нагорная канава №1 ликвидирована при строительстве нового мостового перехода через р. Волга, а №2 не работает из-за отсутствия воды.

Бетонирование мокрого откоса велось участками-картами длиной 300 м. Карты делились на секции по 50 м, которые в свою очередь делились на прямоугольники со стороной 10 м по оси дамбы и по высоте 8,5 м

(верхний ярус), 12,5 м (средний ярус) и нижний ярус до стыка с бетонным упором. По стыкам бетонных плит устраивались фильтры из щебня и крупнозернистого песка

толщиной по 20 см. От гребня дамбы (отметка 58 м) до отметки 53 м укладывались асфальтовые плиты, а ниже доски хвойных пород, пропитанные гудроном. Бетонные плиты армировались стержнями диаметром 24 мм с шагом 1 м в обоих направлениях. Для уплотнения бетона «М-140» использовались плоские и глубинные вибраторы. Ежесуточно укладывалось 300- 320 м 3 бетона, а при максимальном напряжении до 700 м 3 в сутки. Работы велись круглосуточно в три смены, с одинаковой интенсивностью летом и зимой.

Стройка хорошо обеспечивалась необходимой техникой. Всего работало 18 экскаваторов ОМ-202 производства Молотовского завода и более 20 бульдозеров Сталинградского тракторного завода. Оба завода относились к Министерству вооружения. Большое количество оборудования изготавливалось на самом УМЗ: 5 земснарядов, 6 буровых станков, 350 фильтров для глубокого дренажа, вся малая механизация. По специальному заказу изготовлялся гидротехнический цемент на Сенгилеевском цементном заводе. Материально-техническое обеспечение осуществлялось специальное представительство в Москве. Графики строительства не срывались, оно строго ограничивалось сроком первого наполнения водохранилища – в апреле 1956 г. до отметки 46,0 м и второго полного наполнения в апреле-мае 1957 г. до отметки НПУ 53,0 м над уровнем Балтийского моря. Датой полного наполнения водохранилища считается 30 мая 1957 г., а дамба была сдана в постоянную эксплуатацию. УКС УМЗ возложенную на него задачу по защите территории выполнил. В апреле 1959 г. московская комиссия закрыла сметно-финансовый отчёт по затратам на строительство КИЗ в сумме 170 млн. руб. Часть средств, выделенных на благоустройство территории, как неосвоенная была возвращена государству.

В ходе строительства были применены новые методы: строительство линий электропередач на 110 кВ на консолях, укреплённых на верхнем поясе волжского ж.-д. моста, подводное бетонирование днищ опускных стаканов насосных станций (прорабы В.А. Белкин, Ю.Ф. Ефимов), искусственное водопонижение с помощью иглофильтровальных установок.

И, несмотря на это, производственных просчётов в этом новом деле было достаточно: из-за частых прорывов обваловки карт не удалось одновременно намывать дамбу и устраивать придамбовый дренаж, на строительных участках отсутствовал проект организации работ, отсутствовала необходимая нормативная технологическая литература, неправильный выбор винипластовых фильтров для скважин приводил к их быстрому заиливанию, часто нарушались правила техники безопасности при проведении земляных и погрузочно-разгрузочных работ, разбросанность строящихся объектов и наличие переселенцев из зоны затопления. нуждавшихся в строительных способствовали хищениям кирпича и пиломатериалов и т.д. По воспоминаниям участников событий наиболее критический момент возник во время паводка 1957 г. Перед этим возникли опасения за целостность дамбы. К тому же с середины 1952 г. постановлением Ульяновского горисполкома всякое промышленное и гражданское строительство на Нижней Террасе было остановлено. К директору В.П. Белянскому поступили десятки заявлений на обмен жилья с Нижней Террасы на Верхнюю. Подъём водохранилища до НПУ сразу увеличил гидравлическое и механическое воздействие на дамбу. Южный участок длиной в 700 м, примыкающий к ж.-д. полотну, стал оседать на 1-1,65 м. Оперативно были собраны весь транспорт и землеройная техника, и за считанные часы была создана земляная призма 84 тыс. м 3 со стороны сухого откоса дамбы. Ситуация была опасной, что вызвало срочное прибытие главного инженера Куйбышевгидростроя Н.В. Разина. По мнению экспертов, причиной просадки стал намыв дамбы в период суровой зимы 1953-1954 гг. с нарушением технических условий, что повлекло образование мерзлоты в теле дамбы с последующим оттаиванием и осадкой.

В дальнейшем таких опасных ситуаций не было, что обеспечивалось вновь организованной службой эксплуатации инженерной защиты (цех №69), но всё же территории УМЗ и его жилого массива был присвоен статус «зоны катастрофического затопления» (в соответствии с нормативными требованиями СНИП П-10-74 г., 2 ч; 10). Строительство новых промышленных или жилых объектов могло быть разрешено только после снятия этого статуса совместным решением Госстроя СССР, Госплана СССР и штаба ГО СССР. На протяжении двух десятков лет служба эксплуатации совместно с отделами и цехами завода постоянно выполняла большие объёмы ремонтновосстановительных работ по укреплению тела дамбы, ремонту её бетонного крепления, замене глухих коллекторов, не выполняющих своего назначения, на сифоны, по перебуриванию запескованных и восстановлению работоспособности неэффективных скважин, перекладке отдельных неработающих участков придамбового дренажа и его коллекторов, по ремонту систем энергоснабжения насосных станций и т.д. Состояние инженерной защиты постоянно контролировалось руководством Министерства оборонной промышленности. В разное время её посещали министры Д.Ф. Устинов, П.В. Финогенов, Б.М. Белоусов, их заместители по строительству, начальники Главных управлений. Миноборонпромом обеспечивалось безлимитное финансирование строительных и ремонтно-восстановительных работ. В результате были созданы стратегические запасы в основных материалах и оборудовании: каркасно-стержневых фильтров, фракционного гравия, было намыто 700 тыс. м 3 речного песка на случай непредвиденных обстоятельств. В первые два года научное обеспечение эксплуатации на объекте осуществляли специалисты проектно-изыскательской конторы «Гидроспецпроект» а потом научные работники ВНИИ водоснабжения, канализации, гидротехнических сооружений и инженерной гидрогеологии под руководством д.т.н. профессора В.М. Гаврилко.

Все эти меры позволили руководству УМЗ и Миноборонпрома обратиться в Госстрой СССР с просьбой снятия с защищаемой территории статуса зоны катастрофического затопления. В июне-июле 1978 г. было принято соответствующее решение о снятии с Нижней Террасы статуса зоны катастрофического затопления. После чего на этой территории развернулось промышленное и гражданское строительство. Ежегодно вводилось по 7,5-10 тыс. м 2 или до 250 квартир.

За годы эксплуатации все гидросооружения и системы КИЗ физически изнашивались. Существованию дамбы угрожали следующие факторы: просадка тела дамбы на довольно протяжённых участках, разрушение бетонного покрытия мокрого откоса, выветривание и выпадение температурно-осадочных швов. Кроме того, истёкли нормативные сроки эксплуатации придамбового и подгалерейного дренажа. Ряд пролётов дренажа оказался запескованным и не поддавался прочистке и восстановлению. Нормативный срок службы скважин был равен 10 годам. В системе глубокого дренажа дебит скважин в 1,5-2 раза опустился ниже проектного. За годы эксплуатации было перебурено более 1000 скважин. Восстановительные работы отстают от процесса кольматации – зарастания их солями железа, минеральными солями. В результате вместо 170 тыс. м 3 откачивалось всего 100-130 тыс. м 3 в сутки. Ухудшение работы отдельных элементов инженерной защиты привело к повышении уровня грунтовых вод на защищаемой территории выше проектного на 2,5-5 м, что вызвало деформацию фундаментов и разрушение отдельных строительных сооружений, и особенно затопленных инженерных сетей. Трубы выходили из строя через 3-5 лет эксплуатации. В 1988 г. на уровне СМ СССР было принято решение о комплексной реконструкции всех систем инженерной защиты и ливневой канализации территории Нижней Террасы

Реконструкция, начатая в 1990 г., включала в себя:

- реконструкцию дамбы путём возведения по проекту ГПИ «Самарагидропроект» стенки (на расстоянии 44 м от оси дамбы в сторону водохранилища) из железобетонных шпунтов в целях укрепления бетонного крепления мокрого откоса. Эта стенка была создана методом погружения с воды железобетонных шпунтов (бетон повышенной прочности «М-400») таврового сечения длиной 12-15 м, с высотой ребра 60 см и шириной 150 см. По верху шпунтов устраивался монолитный шапочный брус, на который устанавливались железобетонные парапетные плиты. Созданная конструкция возвращала волны в водохранилище. Между стеной и верховым откосом дамбы был намыт песчаный грунт в объёме 1 млн. м 3 до отметки 55 м. Поверхностный слой (20 см) грунта укреплялся посевом многолетних трав. Для предотвращения подмыва стенки вдоль неё со стороны водохранилища был отсыпан шлейф из камня шириной 5 м и толщиной 1 м;
- водопонижение защищаемой территории путём устройства вертикального дренажа из 117 скважин с интервалом в 100 м, глубиной до 46 м и диаметром 400 мм. Эта реконструкция обеспечила понижение уровня грунтовых вод на 2-2,5 м по сравнению с существовавшей сифонной системой;
- водопонижение по створу водоотводной канавы №1 по Карасёву болоту с бурением 53 скважин с шагом 75-100 м с целью перехвата фильтрационного потока с Верхней Террасы;
 - создание новых воздушных и кабельных сетей со строительством новых подстанций.

Реализация этих проектов исключает возможное скоротечное затопление защищаемой территории (270 тыс. м 2 промышленных площадей и 580 тыс. м 2 жилой площади, на которой проживают более 40 тыс. человек) водохранилищем и понижает уровень грунтовых вод до уровня 1953 г.

В завершении следует добавить, что согласно Решению Правительства РФ от 17.12.2004 г. было создано Федеральное государственное учреждение «Ульяновская дамба», на баланс которого был передан комплекс инженерной защиты ПО «УМЗ».

Перечень сокращений и условных обозначений

ВНИИВОДГЕО – Всесоюзный научно-исследовательский институт водоснабжения, канализации, гидротехнических сооружений и инженерной гидрогеологии

г. – год, город

га – гектар

ГПИ – государственный проектный институт

ГСПИ – государственный союзный проектный институт

ГЭС – гидроэлектростанция

д.т.н. – доктор технических наук

им. - имени

кВ - киловольт

кВт - киловатт

КИЗ – комплекс инженерной защиты

КПКР – контора проектно-конструкторских работ

КПП – комбинат производственных предприятий

ЛЭП – линия электропередачи

м - метр

млн. – миллион

МПКУ – Московское проектно-конструкторское управление

МПС – Министерство путей сообщения

НПУ – нормальный подпорный уровень

прораб – производитель работ

ПТО – производственно-технический отдел

п/я – почтовый ящик

руб. - рублей

СМ – Совет Министров

СМУ – строительно-монтажное управление

СССР – Союз Советских Социалистических республик

тыс. – тысяча (тысяч)

ТЭО – технико-экономическое обоснование

УКС – управление капитального строительства

УМЗ – Ульяновский машиностроительный завод

ЦЭМ – (трест) Центроэлектромонтаж

ч - час

Источники и литература

1. Воспоминания и заметки ветеранов КИЗ: В.А. Белкина, Н.А. Крисламова

- 2. Материалы музея истории УМЗ
- 3. Бурдин Е.А. История строительства Куйбышевского гидроузла: достижения, издержки и последствия. Ульяновск: УлГПУ, 2009
 - 4. Граждан В. Тумба-Юмба-Дамба // Володарец, 2005. 15 февр. №6-7, с. 1-2
- 5. Вооружение и военная техника сухопутных войск России. Биографическая энциклопедия. М.: ИД Столичная энциклопедия, 2010

Статья опубликована в сборнике «Природа Симбирского Поволжья», выпуск 12, Ульяновск: Изд-во «Корпорация технологий продвижения», 2011, с. 15-28